The Laplace transform of sin^5t is equal to 5/(8s2+8) – 15/(16s2+144) + 5/(16s2+400). So the Laplace formula of sin5t is given as follows.
L{sin5t} = $\dfrac{5}{8s^2+8} – \dfrac{15}{16s^2+144} + \dfrac{5}{16s^2+400}$.
We now find the Laplace transform of the fifth power of sint.
Table of Contents
What is the Laplace of sin5t
Answer: L{sin5t} = 5/(8s2+8) – 15/(16s2+144) + 5/(16s2+400). |
Proof:
To find the Laplace transform of sin5t, we need to follow the below steps.
Step 1:
First, we simplify the function sin5t using the following trigonometric identities:
- 2sin2t = 1-cos2t.
- 4sin3t = 3sint -sin3t.
So sin5t is reduced as follows.
sin5t = sin2t × sin3t
⇒ sin5t = $\dfrac{1-\cos 2t}{2} \times \dfrac{3\sin t -\sin 3t}{4}$
⇒ sin5t = $\dfrac{1}{8}$ (3sint – sin3t -3sint cos2t +sin3t cos2t)
⇒ sin5t = $\dfrac{1}{8} (3\sin t – \sin 3t – \dfrac{3\sin 3t -3\sin t}{2} + \dfrac{\sin 5t + \sin t}{2})$. This is because sinA cosB = [sin(A+B) + sin(A-B)]/2.
⇒ sin5t = $\dfrac{1}{16} (6\sin t – 2\sin 3t – 3\sin 3t +3\sin t + \sin 5t + \sin t)$
⇒ sin5t = $\dfrac{1}{16} (10\sin t – 5\sin 3t + \sin 5t)$.
Step 2:
Now, taking Laplace transforms on both sides we obtain that
L{sin5t} = L$\big\{ \dfrac{1}{16} (10\sin t – 5\sin 3t + \sin 5t) \big\}$
= $\dfrac{10}{16} L\{\sin t\} – \dfrac{5}{16} L\{\sin 3t\} + \dfrac{1}{16} L\{\sin 5t\}$, by the Linearity Property of Laplace Transforms.
= $\dfrac{5}{8} \dfrac{1}{s^2+1^2} – \dfrac{5}{16} \dfrac{3}{s^2+3^2}+ \dfrac{1}{16} \dfrac{5}{s^2+5^2}$, using the Laplace transform formula L{sin at} = a/(s2+a2).
= $\dfrac{5}{8(s^2+1)} – \dfrac{15}{16(s^2+9)}+ \dfrac{5}{16(s^2+25)}$.
Thus, the Laplace transform of sin5t is equal to L{sin5t} = 5/(8s2+8) – 15/(16s2+144) + 5/(16s2+400).
More Laplace Transforms:
FAQs
Answer: The Laplace transform of sin5t is L{sin5t} = 5/[8(s2+1)] – 15/[16(s2+9)] + 5/[16(s2+25)].
This article is written by Dr. T. Mandal, Ph.D in Mathematics. On Mathstoon.com you will find Maths from very basic level to advanced level. Thanks for visiting.